Декомпрессионные погружения !!!!!!
Модераторы: трофи, Максим Васильев, KWAK, DukeSS
- hooch85
- Новичок
- Сообщения: 5
- Зарегистрирован: 30-06-2005 21:12
- Откуда: Москва
- Контактная информация:
Товарищи дайверы ! Интересует состав смесей используемых в декомпрессионных погружениях (желательнее в России и СССР), знаю что в СССР их было две, кто-нибудь может уточнить названия ?? Заранее благодарен !
Последний раз редактировалось hooch85 22-10-2006 19:15, всего редактировалось 1 раз.
Хм... Так как вопрос полностью отредактирован, ответ стал неактуален. Сорри.
Например, воздуха...
Знаю два варианта, не являющихся кислородно-азотной смесью: 100% кислород и гелиокс.
Думаю, автору подойдут 99.9% всех декомпрессионных погружений в мире.
Явный кандидат во флейм!
Например, воздуха...
Знаю два варианта, не являющихся кислородно-азотной смесью: 100% кислород и гелиокс.
Думаю, автору подойдут 99.9% всех декомпрессионных погружений в мире.
Явный кандидат во флейм!
Последний раз редактировалось Grand 22-10-2006 21:25, всего редактировалось 1 раз.
- Helga
- Афина Мальтийская
- Сообщения: 10849
- Зарегистрирован: 09-06-2006 23:02
- Откуда: Москва-Мальта
- Контактная информация:
Ну, зачем же сразу человека подозревать? Пятница-то кончилась!
Итак, ответ.
При краткосрочных погружениях используются сжатый воздух, кислородно-азотные (КАС), кислородно-гелиевые и кислородно-азотно-гелиевые смеси (КГС, КАГС). При спусках методом длительного погружения в барокамерах используются кислородно-азотные, кислородно-азотно-гелиевые и кислородно-азотно-водородно-гелиевые среды (КАСр,КАГСр, КАВГСр), а при спусках под воду из условий длительного погружения в качестве декосмеси используются КАС, КГС, КАГС, кислородно-водородные и кислородно-водородно-гелиевые смеси (КВС и КВГС). При проведении специальных исследований используются также газовые среды и декосмеси с аргоном (КААрСр, КАрС и КААрС) и неоном (КАГНнСр, КНнС и КГНнС).
Итак, ответ.
При краткосрочных погружениях используются сжатый воздух, кислородно-азотные (КАС), кислородно-гелиевые и кислородно-азотно-гелиевые смеси (КГС, КАГС). При спусках методом длительного погружения в барокамерах используются кислородно-азотные, кислородно-азотно-гелиевые и кислородно-азотно-водородно-гелиевые среды (КАСр,КАГСр, КАВГСр), а при спусках под воду из условий длительного погружения в качестве декосмеси используются КАС, КГС, КАГС, кислородно-водородные и кислородно-водородно-гелиевые смеси (КВС и КВГС). При проведении специальных исследований используются также газовые среды и декосмеси с аргоном (КААрСр, КАрС и КААрС) и неоном (КАГНнСр, КНнС и КГНнС).
Извините за насмешку - не хотел обидеть! Helga права - пятница кончилась!hooch85 писал(а):Товарищи дайверы ! Интересует состав смесей используемых в декомпрессионных погружениях (желательнее в России и СССР), знаю что в СССР их было две, кто-нибудь может уточнить названия ?? Заранее благодарен !
Вариантов намного больше, чем два.
Обычно слово "смесь" (mixed gas") употребляют по отношению к погружениям на иных газах, чем воздух или нитрокс. (NOAA).
Чаще всего можно встретить понятия "тримикс" (кислород-азот-гелий), "гелиокс" (кислород-гелий), "гидрокс"(кислород-водород, или кислород-водород-гелий).
Писать на эту тему реферат можно до утра, поэтому (надеюсь, с английским дружите!) - копия двух страниц из NOAA:
Mixed-Gas and
Oxygen Diving
16.0 GENERAL
The term "mixed-gas diving" refers to diving opera¬tions in which the diver breathes a mixture other than air or nitrox. Traditionally the term has been used by com¬mercial divers to refer to diving mixtures containing oxy¬gen and helium. Contemporary usage broadens "mixed-gas diving" or a similar term "special mix div¬ing" to include "trimixes" of nitrogen, helium, and oxy¬gen. The breathing gas can also be 100% oxygen, which, although technically not a "mixed" gas, is often used during decompression and under specialized circum¬stances for diving; oxygen diving requires knowledge, training, and support similar to that needed for mixed¬gas diving.
The main incentive for diving with non-air gas mix¬tures is to avoid narcosis. This applies in the deep part of the so-called "air range" as well as to depths universally considered too deep for air where diving is normally done with mixtures containing helium. Another reason for using prepared mixtures is to be able to control the oxygen fraction. This allows improved decompression with mix¬tures having more oxygen than air (see Chapter 15) and is used to avoid oxygen toxicity with mixtures used for deep¬er diving. A further reason is to improve decompression; occasional gains can come from switching the inert compo¬nent of the breathing mix with oxygen.
For the purpose of this chapter, the term "mixed-gas div¬ing" refers to diving to a maximum depth of 300-350 fsw (92.1-107.5 msw). Today, nearly all commercial diving conducted deeper than this range is done with saturation. The range covered by this chapter can be regarded as "sur¬face-oriented diving"-that is, divers begin and end each dive at the surface or one atmosphere.
Mixed-gas diving operations require detailed planning, specialized and sophisticated equipment, and, sometimes,
extensive surface support personnel and facilities. The very nature of mixed-gas operations, and the fact that such dives are often conducted at great depths and for extended periods of time, increase the risks associated with such dives and necessitates the need for a team approach. Fur¬ther, it is extremely important that mixtures be properly identified since breathing the wrong mix can lead to a fatal accident. For these reasons, there is no such thing as a casual mixed-gas dive.
This chapter discusses the benefits of using special breathing mixes for open water diving primarily with open-circuit scuba equipment.
16.1 INERT GAS PHYSIOLOGY
Most of the gas-related factors of concern in diving relate to physiology, the effect of the gases on the diver, and the role of these gases in decompression. This section discusses the gases, and other chapters cover the application of the various mixes. (See Chapters 2 and 3 for additional information.)
Oxygen must be a component of any breathing mix¬ture; the commonly used inert components (or "diluent gases") are nitrogen and helium. Other gases, such as neon and hydrogen, have been studied as replacements for the helium component, and other gases have been used experimentally.
16.1.1 Nitrogen and Narcosis
The use of nitrogen, the most commonly used diving inert gas, is limited because of its narcotic properties, its density, and its unfavorable decompression properties. To its advantage, nitrogen is readily available as the major component of atmospheric air, and its properties are well understood.
Mixtures of oxygen and nitrogen are generally used for shallow dives. The most common nitrogen-oxygen mixture
---------------------------------------------------------------------------------------------------------------------------------
I Metric pressure and depth conversions by agreement are shown to the nearest 0.1 meter or msw. In some cases, the references to pres¬sure or length are to ranges and properly should not appear to be so exact, so any excess precision should be ignored. The conversion between feet and meters of sea water is 1 fsw = 0.307 msw. This conversion is for the pressure units (msw and fsw), not the units of length, meter and foot which is : 1 ft - 0.305 m.
---------------------------------------------------------------------------------------------------------------------------------
16-1
is air, which can be used effectively from sea level to approximately 150 fsw (46.1 msw). At depths greater than this, nitrogen narcosis (covered in detail in Chapter 3) is the dominant limiting factor in the use of nitrogen-based breathing mixtures.
For circumstances that require clear thinking and quick response to solve a problem, deep diving with air can be dangerous. It is the reason NOAA limits the use of air to 170 fsw (52.2 msw).
Other gases can cause narcosis. See Chapter 3, Diving Physiology, section 3.3.3.1, Inert Gas Narcosis.
16.1.2 Helium
Helium has not been known to produce narcotic effects on divers at any depth at which it has been used (Lambertsen, Gelfand, Peterson, Strauss, Wright, Dick¬son, Puglia, and Hamilton 1977). Its lower density makes it much easier to breathe than nitrogen, and in some cases (long exposures) it improves decompression. Helium's use is limited by its cost and more limited avail¬ability than air. However for deeper dives where atten¬tion to detail is paramount, helium is usually well worth its extra cost if it avoids an accident caused by narcosis rendering a diver unable to cope with a problem.
Another drawback associated with the use of helium is the loss of body heat, which is caused in part by the fact that the thermal conductivity of helium is approximately six times that of air. Helium has a higher thermal conduc¬tivity than nitrogen; its thermal properties make it unfavor¬able in cases where the diver is immersed in a helium gas mixture, or if it is used inside a diving suit. Helium is a very poor insulator. Helium properties with respect to High Pressure Nervous Syndrome (HPNS) and hyperbaric arthralgia are relevant in surface-oriented diving.
Mixtures containing helium feel colder for the diver to breathe, but because helium is a lighter gas with less thermal capacity, breathing a helium mixture may actual¬ly remove less heat from the diver than an equivalent nitrogen-based mixture. It has been determined that in order to avoid hypothermia, breathing gas has to be heat¬ed for divers working at depths deeper than approximate¬ly 500 fsw (153.5 msw). Heat loss in the breathing gas relies on a combination of both heat capacity and conduc¬tivity, but definitive research to partition the relative importance of these two effects in breathing gas heat loss has yet to be done.
Another well-known property of helium is its tenden¬cy to distort human speech. This can make voice com¬munication difficult or impossible at great depths. The effect can be corrected with electronic "unscramblers," but they are generally not needed in the range of surface¬oriented diving.
Yet another gas-related deep diving problem not like¬ly to be encountered by NOAA surface-oriented divers is
isobaric inert gas counterdiffusion. This phenomenon can occur when a person saturated with a nitrogen gas load (or other soluble, slow-moving gas) is switched into a helium-rich environment (or other rapidly diffusing gas). The helium diffuses into the skin faster than the nitrogen diffuses out, leading to a local supersaturation manifested as severe itching and rashes. This can also predispose a diver to vestibular (inner ear) decompression sickness. Switching to air or another nitrogen-based gas during decompression from a dive with helium mixtures does not cause counterdiffusion problems because the helium off-gases faster than the nitrogen can on-gas.
16.1.3 Other Inert Gases (Hydrogen, Neon, Argon)
As mentioned, several other gases have been studied as replacements for the helium component. Neon, argon, and hydrogen have been used operationally, but mainly on an experimental basis. All three carry with them some sig¬nificant disadvantages. Still other gases, including sulfur hexafluoride, nitrous oxide, and carbon tetrafluoride, have been used as experimental gases to vary the properties of breathing mixtures.
Neon offers some advantages over helium. Although evidence is weak, it appears to have some decompression advantages for certain profiles. Neon is not narcotic, and it has lower thermal conductivity and distorts speech less than helium (Lambertsen, Gelfand, Peterson, Strauss, Wright, Dickson, Puglia, and Hamilton 1977). However, neon's density causes it to create more breathing resis¬tance than helium, a problem as depth increases beyond approximately 500 fsw (153.5 msw). Pure neon is too expensive to use for diving. However, a mixture of neon and helium produced as a by-product in the cryogenic distillation of air (about 75% neon and 25% helium, called "crude neon" or "neon 75") could be economically feasible under the right circumstances and has been used in several commercial and recreational diving operations.
Hydrogen is not easily used as a diver's breathing gas because of its explosive qualities. However, by keeping the oxygen concentration in the mixture below the limit of combustion, non-explosive hydrogen-oxygen mixtures can be used. The lower flammability limit of hydrogen is 4% oxygen, and this can be attained in a gas that will have enough POz for breathing deeper than about 200 fsw (61.4 msw). Special techniques are used to prepare the mixtures. Hydrogen has some distinct advantages in its low density and more favorable HPNS properties, but these are only relevant in very deep div¬ing. Hydrogen is narcotic, is unfavorable during decom¬pression, and counterdiffuses against helium. One interesting new prospect for hydrogen is that microbial enzymes are being studied that enable laboratory ani¬mals to "digest" this gas and remove it from the blood circulation.
ФФу-у-у-у.... Helga - оправдался? Кстати, если нетрудно, укажите где почитать приведенные Вами шикарные советские определения!

- Helga
- Афина Мальтийская
- Сообщения: 10849
- Зарегистрирован: 09-06-2006 23:02
- Откуда: Москва-Мальта
- Контактная информация:
Вот это да! Оправдался, выпущен подчистую, начальник тюрьмы приносит извинения, кореша дарят поделки на память 
А источник шикарных определений все тот же - Глубоководные водолазные спуски и их медицинское обеспечение. Смолин, Соколов, Павлов.

А источник шикарных определений все тот же - Глубоководные водолазные спуски и их медицинское обеспечение. Смолин, Соколов, Павлов.
Уф, кажись пронесло... Рвать на куски за снобизм не будут (пожалели, слава Богу, новичка)!Helga писал(а):Вот это да! Оправдался, выпущен подчистую, начальник тюрьмы приносит извинения, кореша дарят поделки на память
А источник шикарных определений все тот же - Глубоководные водолазные спуски и их медицинское обеспечение. Смолин, Соколов, Павлов.
За адрес спасибо, главное - книжка у меня есть, но все больше буржуйскую матчасть грыз. Вернемся к родным берегам...


